Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 168
# Copie de la matrice def copiematrice(A): n = A.nrows() p = A.ncols() taille = n*p B = Matrix(QQ,n,p,[0 for k in range(taille)]) for i in range(n): for j in range(p): B[i,j]=A[i,j] return B A = matrix(RR,[[1, 1, 1], [1, -1, 2], [2, -1, 1]]) copiematrice(A) def copievecteur(Y): n=len(Y) n Z = vector(RR,[0 for j in range(n)]) for i in range(n): Z[i]=Y[i] return Z Y = vector(RR,[2,9,7]) copievecteur(Y)
[ 1 1 1] [ 1 -1 2] [ 2 -1 1] (2.00000000000000, 9.00000000000000, 7.00000000000000)
# Recherche du pivot def indicepivot(A,j): n = A.nrows() p = A.ncols() i=j max = 0 for k in [j..n-1]: if abs(A[k,j])>max: max=abs(A[k,j]) i=k return i indicepivot(A,0)
2
# Echange de lignes def echangelignes(A,i,j): temp = A[i,:] A[i,:]=A[j,:] A[j,:]=temp echangelignes(A,1,2) A echangelignes(A,1,2) A
[ 1.00000000000000 1.00000000000000 1.00000000000000] [ 2.00000000000000 -1.00000000000000 1.00000000000000] [ 1.00000000000000 -1.00000000000000 2.00000000000000] [ 1.00000000000000 1.00000000000000 1.00000000000000] [ 1.00000000000000 -1.00000000000000 2.00000000000000] [ 2.00000000000000 -1.00000000000000 1.00000000000000]
# Operations elementaires def transvection(A,k,i,alpha): temp=A[k,:] A[k,:]=temp-alpha*A[i,:] B=copiematrice(A) show(B) transvection(B,1,0,1) show(B) transvection(B,2,0,2) show(B)
(111112211)\displaystyle \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 2 & -1 & 1 \end{array}\right)
(111021211)\displaystyle \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 2 & -1 & 1 \end{array}\right)
(111021031)\displaystyle \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & -3 & -1 \end{array}\right)
# Algorithme du pivot def PivotGauss(A,Y): B=copiematrice(A) Z=copievecteur(Y) n=B.nrows() #assert len(Z)==n p=B.ncols() for j in [0..n-2]: i=indicepivot(B,j) echangelignes(B,i,j) z=Z[i] Z[i]=Z[j] Z[j]=z for i in [j+1..n-1]: pivot=B[i,j]/B[j,j] transvection(B,i,j,pivot) Z[i]=Z[i]-pivot*Z[j] X = vector(RR,[0]*n) for i in range(n-1,-1,-1): X[i] = (Z[i] - sum(B[i,j]*X[j] for j in range(i+1,n)))/B[i,i] return X X=PivotGauss(A,Y) A*X==Y
True
# Version 2 avec assemblage de la matrice (A | Y) def MatriceGauss(A,Y): n = A.nrows() p = A.ncols() B = Matrix(QQ,n,p+1) for i in range(n): for j in range(p): B[i,j]=A[i,j] B[i,p]=Y[i] return B A = matrix(QQ,[[1, 1, 1], [1, -1, 2], [2, -1, 1]]) Y = vector(QQ,[2,9,7]) show(MatriceGauss(A,Y))
(111211292117)\displaystyle \left(\begin{array}{rrrr} 1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 9 \\ 2 & -1 & 1 & 7 \end{array}\right)
# Recherche du pivot def indicepivot(A,j): n = A.nrows() p = A.ncols() i=j max = 0 for k in [j..n-1]: if abs(A[k,j])>max: max=abs(A[k,j]) i=k return i indicepivot(A,0)
2
# Echange de lignes def echangelignes(A,i,j): temp = A[i,:] A[i,:]=A[j,:] A[j,:]=temp echangelignes(A,1,2) show(A) echangelignes(A,1,2) show(A)
(111211112)\displaystyle \left(\begin{array}{rrr} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & -1 & 2 \end{array}\right)
(111112211)\displaystyle \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 2 & -1 & 1 \end{array}\right)
# Operations elementaires def transvection(A,k,i,alpha): temp=A[k,:] A[k,:]=temp-alpha*A[i,:] B=copy(A) show(B) transvection(B,1,0,1) show(B) transvection(B,2,0,2) show(B)
(111112211)\displaystyle \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 2 & -1 & 1 \end{array}\right)
(111021211)\displaystyle \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 2 & -1 & 1 \end{array}\right)
(111021031)\displaystyle \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & -3 & -1 \end{array}\right)
# Algorithme du pivot def PivotGauss2(A,Y): B=MatriceGauss(A,Y) n=A.nrows() p=A.ncols() for j in [0..n-2]: i=indicepivot(B,j) echangelignes(B,i,j) for i in [j+1..n-1]: pivot=B[i,j]/B[j,j] transvection(B,i,j,pivot) X = vector(QQ,[0]*n) Z = vector(B[:,p]) for i in range(n-1,-1,-1): X[i] = (Z[i] - sum(B[i,j]*X[j] for j in range(i+1,n)))/B[i,i] return X X=PivotGauss2(A,Y) A*X==Y show(A*X)
True
(2,9,7)\displaystyle \left(2,\,9,\,7\right)