CoCalc Public Files2018-09-04-150725.ipynb
Author: matthew cooper
Views : 108
Description: cosc_lab_tues_w6
Compute Environment: Ubuntu 18.04 (Deprecated)

# Q1

In [41]:
ezplot('tan(x)',[0,10])
hold on;
g = @(x) 4*x./(4-x.^2);

lb = 3*pi/2+0.1;
ub = 5*pi/2-0.1;
hold on;
ezplot(g, [0,10])
plot([lb,ub],[0,0], 'ro')
plot([lb,ub],[0,0], 'r.')

In [39]:
format long
% Solve (4-x.*x)*tan(x) - 4x = 0
% tan(x) disc at each (2n+1)(pi/2)
% Guess lower, upper bracket = 3pi/2+0.1, 5pi/2 -0.1

hx = @(x) (4-x.^2).*tan(x)-4*x;
ezplot(hx, [0, 10])
hold on;
plot([lb,ub],[0,0], 'r.')
plot([lb,ub],[0,0], 'ro')


In [26]:
hx = @(x) (4-x.^2).*tan(x)-4*x;
TOL = 1e-7;
a = 3*pi/2+0.1;
b = 5*pi/2-0.1;
for n = 1:100
c = (a+b)/2
if abs((b-a)/2) <= TOL
disp(n)
break
elseif sign(hx(c)) == sign(hx(a))
a = c;
else
b = c;
end

end

c = 6.28318530717959 c = 5.54778714378214 c = 5.91548622548086 c = 5.73163668463150 c = 5.63971191420682 c = 5.59374952899448 c = 5.61673072160065 c = 5.60524012529756 c = 5.59949482714602 c = 5.59662217807025 c = 5.59805850260814 c = 5.59734034033919 c = 5.59698125920472 c = 5.59680171863749 c = 5.59671194835387 c = 5.59675683349568 c = 5.59677927606658 c = 5.59676805478113 c = 5.59677366542386 c = 5.59677086010249 c = 5.59677226276317 c = 5.59677156143283 c = 5.59677191209800 c = 5.59677208743059 c = 5.59677217509688 25
In [27]:
r = 6.4e6;
v = 5e3;
f = v*c/r;
T = 1/f

T = 228.703252509621
In [32]:
ezplot(hx, [0, 10])
hold on;
plot(c,0,'r.')
plot(c,0,'ro')



# Q2

In [33]:
format longE;

In [34]:
function [x] = newt(x0,n)
f = @(y) y^2 -3;
df = @(y) 2*y;

if n == 0
x = x0;
else
temp = newt(x0,n-1);
x = temp - f(temp)/df(temp);
end
end

In [36]:
TOL = 1e-10;
err = TOL + 1;
n = 0;
while err > TOL
n += 1
err = newt(2,n) - sqrt(3)
end

n = 1.00000000000000E+00 err = 1.79491924311228E-02 n = 2.00000000000000E+00 err = 9.20495739800131E-05 n = 3.00000000000000E+00 err = 2.44585041109247E-09 n = 4.00000000000000E+00 err = 0.00000000000000E+00

# Q3

In [37]:
u = 16;
g = 9.8;
time = @(th) 20/(u*cosd(th));
y = @(th) u*time(th)*sind(th)-(g/2)*time(th)^2 -4;

th1 = fzero(y, 55)
th2 = fzero(y, 50)

th1 = 6.00350373511171E+01 th2 = 4.12748951229031E+01
In [38]:
th = th1;
t = time(th);
min(norm([u*t*cosd(th), u*t*sind(th)- (g/2)*t.^2])-[20,4])
th = th2;
t = time(th);
min(norm([u*t*cosd(th), u*t*sind(th)- (g/2)*t.^2])-[20,4])

ans = 3.96078054371142E-01 ans = 3.96078054371142E-01
In [ ]: