| Hosted by CoCalc | Download
proof.number_field(False) #GRH is assumed, makes computation of fundamental units run much faster global verbose #set 1 for text output/debug global precision precision = 250 #needs to be very big sometimes, for example for x^4-101*x^3+5*x^2-101*x+1 the precision must be around 250; otherwise sage makes some errors def msg(text): #text output for verbose mode if verbose: print text def inicialize(f,x): ''' Inicialization of the fields, matrices, ... Returns the Log-matrix, the embedding corresponding to the real generator closest to x, the corresponding number field, its fundamental system of units ''' NF.<g> = NumberField(f,embedding = x) print g msg('Computing the units...') units = NF.units() msg('DONE!') msg('-------------------') print 'hello' print g.N() emb = g.complex_embeddings(precision) ran = f.degree()-1 indices = [(j,emb[j].is_real()) for j in xrange(ran) if emb[j].conjugate() != emb[j+1]] + [(ran,emb[ran].is_real())] #indices of embeddings when each first of a complex pair is omitted; together with an information if the embedding is real emb_nopairs= [emb[j] for j,r in indices] k = [abs(i-g.N(precision))<10^(-30) for i in emb_nopairs].index(1) # k is the embedding corresponding to the generator, BEWARE: the 'e-30' precision in the term 10^(-30) must be somewhat smaller than the global precision cols = [] for u in units: cols.append([(2^(1-r))*log(abs(u.complex_embeddings(precision)[j])) for j,r in indices]) A = column_matrix(cols) msg('The roots of the polynomial are (not showing the complex conjugates): ') if verbose: for i in xrange(len(emb_nopairs)): print str(i) + ': ' + str(emb_nopairs[i]) msg('\n' + 'Your field is determined by the ' +str(k)+'-th root in the previous list (indexing from zero)') msg('-------------------') msg('Units of the field are: ' + str(units)) msg('-------------------') msg('The Log matrix is: ') msg(str(A)) msg('-------------------') return [A,k,NF,units] def FINDMIN(A,k,N,units): ''' Finds minimal U-number in the field N specified by the k-th embedding (see inicialize()) returns the minimal U-number of the field, and its vector of exponents ''' deg = N.absolute_degree() if (deg == 2) or (deg % 2 == 1): delta = log(1.32) else: delta = (1/(4*deg))*(log(log(deg))/log(deg))^3 p = MixedIntegerLinearProgram(maximization = False) #beware: glpk solver, although being quite fast, sometimes returns a non-admissible solution B = copy(A) B.set_row_to_multiple_of_row(k,k,-1) x = p.new_variable(nonnegative=False, integer = True) obj = [-B[k][i]*x[i] for i in xrange(len(B[0]))] #objective function set to be k-th row of original matrix times x p.set_objective(sum(obj)) c = [0] * B.nrows() c[k] = -delta # c[k] = - 0.97242365020 p.add_constraint(B * x <= c) if verbose ==1: print 'FINDMIN solves the following: ' + '\n' p.show() print '-------------------' p.solve() e = vector(p.get_values(x).values()) unumber = prod([units[i]^e[i] for i in xrange(len(e))]) unumber = unumber if unumber.N() > 0 else -unumber msg('The optimal value of FINDMIN is achieved at: ' + str(e)) msg('The U-number output of FINDMIN is: ' + str(unumber.N()) + ' with minimal polynomial ' + str(unumber.minpoly())) return (unumber,e) if unumber.N() > 0 else (-unumber,e) def CUTEDGE(A,k,N,units): ''' Implementation of CUTEDGE returns the Pisot generator of the number field N of minimal height ''' deg = N.absolute_degree() if (deg == 2) or (deg % 2 == 1): delta = log(1.32) else: delta = (1/(4*deg))*(log(log(deg))/log(deg))^3 M = copy(A) out = FINDMIN(M,k,N,units) unumber = out[0] e = out[1] # unumber = prod([units[i]^e[i] for i in xrange(len(e))]) # unumber = unumber if unumber.N() > 0 else -unumber # msg('The optimal value of FINDMIN is achieved at: ' + str(e)) # msg('The U-number output of FINDMIN is: ' + str(unumber.N()) + ' with minimal polynomial ' + str(unumber.minpoly())) if 1.0 not in map(abs,unumber.complex_embeddings(prec=300)): msg('\t'+'* and it is (complex) Pisot with conjugates:') msg('\t'+str(unumber.complex_embeddings())) if unumber in RR: msg('!!!WARNING!!!') return unumber if unumber.N() > 0 else -unumber else: msg('\t'+'* and it is Salem with conjugates:') msg('\t'+str(unumber.complex_embeddings())) msg('\t'+'* and absolute values of the conjugates:') msg('\t'+str(map(abs,unumber.complex_embeddings()))) j = 0 # j will be the the non-identic real embedding for i in xrange(A.nrows()): x = A[i]*e if (x<0) & (abs(x)>10^(-50)): j = i msg('\t'+'* and the other real embedding is the ' + str(j) + '-th one. (In the first list).') break msg('-------------------') B = copy(A) B.add_multiple_of_row(k,j,1) B.set_row_to_multiple_of_row(k,k,-1) # now we have C^k = -A^k - A^j c = [0] * B.nrows() c[k] = -delta q = MixedIntegerLinearProgram(maximization = False) x = q.new_variable(nonnegative=False, integer = True) obj = [A[k][i]*x[i] for i in xrange(len(A[0]))] q.set_objective(sum(obj)) q.add_constraint(B * x <= c) if verbose == 1: print 'The second run of FINDMIN solves the following: ' + '\n' q.show() print '-------------------' q.solve() e = vector(q.get_values(x).values()) pisot = prod([units[i]^e[i] for i in xrange(len(e))]) pisot = pisot if pisot.N() > 0 else -pisot msg('The optimal value of CUTEDGE is achieved at: ' + str(e)) msg('The smallest Pisot unit in your field is approximately ' + str(pisot.N()) + ' with minimal polynomial ' + str(pisot.minpoly())) return pisot ################### verbose = 1 P.<x> = PolynomialRing(ZZ) f = x^2-5*x+1 # defining polynomial for the field emb = 1 # we choose an embedding i = inicialize(f,emb) CUTEDGE(i[0],i[1],i[2],i[3]).N(precision)
g Computing the units... DONE! ------------------- hello 0.208712152522080 The roots of the polynomial are (not showing the complex conjugates): 0: 0.20871215252207999670597640313599575550777171161601404869637893804656578723 1: 4.7912878474779200032940235968640042444922282883839859513036210619534342128 Your field is determined by the 0-th root in the previous list (indexing from zero) ------------------- Units of the field are: (g,) ------------------- The Log matrix is: [-1.5667992369724110786640568625804834938620823510926588639329459980122148135] [ 1.5667992369724110786640568625804834938620823510926588639329459980122148135] ------------------- FINDMIN solves the following: Minimization: -1.56679923697 x_0 Constraints: 1.56679923697 x_0 <= -0.277631736598 1.56679923697 x_0 <= 0.0 Variables: x_0 is an integer variable (min=-oo, max=+oo) ------------------- The optimal value of FINDMIN is achieved at: (-1.0) The U-number output of FINDMIN is: 4.79128784747792 with minimal polynomial x^2 - 5*x + 1 * and it is (complex) Pisot with conjugates: [4.79128784747792, 0.208712152522080] !!!WARNING!!! 4.7912878474779200032940235968640042444922282883839859513036210619534342128