Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Project: MAT 280
Views: 60
1
\documentclass[oneside,addpoints,12pt]{exam}
2
\usepackage[utf8]{inputenc}
3
\usepackage{amsfonts,amsmath,mathrsfs,
4
circuitikz,amsthm,mathtools,
5
easybmat,hyperref,booktabs,
6
array}
7
\pagestyle{headandfoot}
8
\firstpageheader{18SU MAT 280}{\em Unit IV Take-Home Exam}{Name:\underline{\hspace{1.75in}}}
9
\runningheader{}{}{}
10
\firstpagefooter{}{}{Page \thepage\ of \numpages}
11
\runningfooter{18SU MAT 280}{\em Unit IV Take-Home Exam}{Page \thepage\ of \numpages}
12
\runningfootrule
13
14
\newcommand{\myspace}{\fbox{\parbox[c][0.35in]{0.35in}{\hfill}}}
15
\newcommand{\varspace}[2]{\mbox{\parbox[c][#1]{#2}{\hfill}}}
16
17
\makeatletter
18
\renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{%
19
\hskip -\arraycolsep
20
\let\@ifnextchar\new@ifnextchar
21
\array{#1}}
22
\makeatother
23
24
%Dot Product Command
25
\makeatletter
26
\newcommand*\dotproduct{\mathpalette\dotproduct@{.75}}
27
\newcommand*\dotproduct@[2]{\mathbin{\vcenter{\hbox{\scalebox{#2}{$\m@th#1\bullet$}}}}}
28
\makeatother
29
30
\usepackage{geometry}
31
\geometry{
32
a4paper,
33
left=0.75in,
34
right=0.75in,
35
top=0.75in,
36
bottom=1in
37
}
38
39
40
%Number Answer Line
41
\newcommand{\numAnswerLine}[1][{}]{%
42
\fillin[#1][0.5in]%
43
}
44
45
\newcommand{\wordAnswerLine}[1][{}]{%
46
\fillin[#1][1.5in]%
47
}
48
49
\begin{document}
50
51
\begin{center}
52
\fbox{\fbox{\parbox{6.5in}{
53
Attempt all parts of this exam. Students are encouraged to use Sage Math and/or a TI calculator to check their work and complete parts of this exam. This exam has \numpoints\, possible points. Scores will be calculated out of \numpoints\, points.
54
}}}
55
\end{center}
56
57
58
\begin{questions}
59
\question[10] Using the word bank provided, fill in the blank to complete the definition of the given word. In these questions, assume that $A$ is a matrix from $\mathbb{R}^{m\times n}$.
60
61
\fbox{Word Bank: rank, row space, composition, null space, column space}
62
63
\begin{parts}
64
\part The \wordAnswerLine[row space] of a matrix is a subspace of $\mathbb{R}^n$ spanned by the the rows of $A$.\\[0.25in]
65
66
\part The \wordAnswerLine[column space] of a matrix is a subspace of $\mathbb{R}^m$ spanned by the the columns of $A$.\\[0.25in]
67
68
\part The \wordAnswerLine[null space] of a matrix is the subspace of $\mathbb{R}^n$ consisting of vectors that are solutions to the equation $A\vec{x}=\vec{0}$.\\[0.25in]
69
70
\part The \wordAnswerLine[rank] of a matrix is the number of non-zero rows. Alternately, it is the number of pivot columns of the matrix.\\[0.25in]
71
72
\part If $T$ and $S$ are two linear transformation, then $(T\circ S)\left(\vec{v}\right)$ is called the \wordAnswerLine[composition] of two linear transformations.
73
\end{parts}
74
75
\question[10] Box the word \fbox{\Large\textsc{True}} or \fbox{\Large \textsc{False}} to indicate your answer. If the statement is false, explain why or provide an example why the statement is false.
76
\begin{parts}
77
\part {\Large\textsc{True} / \textsc{False}}\\
78
Every plane in $\mathbb{R}^3$ is a subspace of $\mathbb{R}^3$.
79
\setlength\linefillheight{.28in}
80
\begin{solutionorlines}[1in]
81
\end{solutionorlines}\vfill
82
83
\part {\Large\textsc{True} / \textsc{False}}\\
84
The transformation $T:\mathbb{R}^2\to\mathbb{R}^2$ such
85
that $T\left(\vec{x}\right)=-\vec{x}$ is a linear transformation.
86
\begin{solutionorlines}[1in]
87
\end{solutionorlines}\vfill
88
\end{parts}
89
90
\newpage
91
92
\question Consider the augmented matrix $\begin{bmatrix}[r|r|r]A & \vec{u} & \vec{v}\end{bmatrix}$ defined below with given reduced row echelon form
93
\[\begin{bmatrix}[rrrrr|r|r]
94
4 & 5 & 17 & -5 & 21 & -30 & 2 \\
95
1 & 5 & 8 & -1 & -10 & -14 & -6 \\
96
7 & 1 & 22 & 2 & 57 & 6 & 5 \\
97
5 & -6 & 9 & -5 & 74 & -8 & -2
98
\end{bmatrix}\quad\stackrel{\mathrm{RREF}}{\widetilde{\qquad}}\quad
99
\begin{bmatrix}[rrrrr|r|r]
100
1 & 0 & 3 & 0 & 9 & 0 & 0 \\
101
0 & 1 & 1 & 0 & -4 & -2 & 0 \\
102
0 & 0 & 0 & 1 & -1 & 4 & 0 \\
103
0 & 0 & 0 & 0 & 0 & 0 & 1
104
\end{bmatrix}
105
\]
106
where $A\in\mathbb{R}^{4\times5}$ and $\vec{u},\vec{v}\in\mathbb{R}^4$.
107
108
% Link to matrix and solution: https://sagecell.sagemath.org/?q=jxdtpf
109
110
\begin{parts}
111
\part[6] What is the rank and nullity of $A$?
112
\begin{solutionorbox}[0.75in]
113
\end{solutionorbox}
114
115
\part[6] Find a basis for $\text{row}(A)$.
116
\begin{solutionorbox}[1.75in]
117
\end{solutionorbox}
118
119
\part[6] Find a basis for $\text{col}(A)$.
120
\begin{solutionorbox}[1.75in]
121
\end{solutionorbox}
122
123
\part[8] Find a basis for $\text{null}(A)$.
124
\begin{solutionorbox}[2.3in]
125
\end{solutionorbox}
126
127
\part[6] Is $\vec{u}$ in the column space of $A$? If so, write $\vec{u}$ as a linear combination of vectors from the basis of $\text{col}(A)$.
128
\begin{solutionorbox}[1.5in]
129
\end{solutionorbox}
130
131
\part[6] Is $\vec{v}$ in the column space of $A$? If so, write $\vec{v}$ as a linear combination of vectors from the basis of $\text{col}(A)$.
132
\begin{solutionorbox}[1.5in]
133
\end{solutionorbox}
134
\end{parts}
135
136
\question[10] Explain (or prove) why the set of all skew-symmetric matrices -- i.e. all matrices that satisfy the equation $A=-A^T$ -- form a subspace of $\mathbb{R}^{n\times n}$.
137
\begin{solutionorbox}[1.75in]
138
\end{solutionorbox}
139
140
\question[4] Why is the empty set (the set with nothing in it) NOT a subspace?
141
\begin{solutionorlines}[1in]
142
\end{solutionorlines}
143
144
\question[6] Justify why the transformation $T\left(\begin{bmatrix}x \\ y\end{bmatrix}\right)=\begin{bmatrix}x \\ x+1\end{bmatrix}$ is NOT a linear transformation.
145
\begin{solutionorbox}[1in]
146
\end{solutionorbox}
147
148
\question[10] Prove that the transformation $T\left(\begin{bmatrix}x \\ y\end{bmatrix}\right)=\begin{bmatrix}2x+y\\y\end{bmatrix}$ is linear.
149
\begin{solutionorbox}[3.5in]
150
\end{solutionorbox}
151
152
\question Let $T_1$, $T_2$, $T_3$, and $T_4$ be the transformations described below:
153
\begin{itemize}
154
\item $T_1$: rotation by $90^\circ$ (counterclockwise),
155
\item $T_2$: projection onto the $x$-axis,
156
\item $T_3$: reflection about the line $y=x$,
157
\item $T_4$: reflection about the $x$-axis.
158
\end{itemize}
159
160
You may use the applet that we built in class for this problem: \url{https://sagecell.sagemath.org/?q=mtduir}.
161
162
\begin{parts}
163
\part[8] Write a matrix for each of the given transformations and label them correctly.
164
\begin{solutionorbox}[1.5in]
165
\end{solutionorbox}
166
167
\part[4] Find the matrix that first reflects about the $x$-axis and then rotates $90^\circ$ (counterclockwise).
168
\begin{solutionorbox}[1.5in]
169
\end{solutionorbox}
170
\end{parts}
171
172
\end{questions}
173
\end{document}
174
175
176
177
178
179
180