Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 22
1
\documentclass[12pt]{amsart}
2
\usepackage{amsmath,amsthm,amsfonts,amssymb,latexsym,verbatim,bbm}
3
\usepackage{amscd}
4
\usepackage[dvips]{graphicx}
5
\usepackage{graphicx}
6
\graphicspath{ {./images/} }
7
\input xy
8
\xyoption{all}
9
\usepackage{hyperref,multirow}
10
%\usepackage[notref,notcite]{showkeys}
11
\usepackage[shortlabels]{enumitem}
12
\usepackage{tikz, ifthen}
13
\usepackage[nomessages]{fp}
14
\usepackage{mathtools}
15
\usetikzlibrary{calc}
16
\usetikzlibrary{chains}
17
\usepackage{booktabs,caption}
18
19
20
%\usepackage[all]{xy}
21
%\CompileMatrices
22
%\usepackage{coordsys}
23
24
\newtheorem{thm}{Theorem}
25
\newtheorem{conj}{Conjecture}
26
\newtheorem{prop}{Proposition}
27
\newtheorem{lemma}[prop]{Lemma}
28
\newtheorem{claim}[prop]{Claim}
29
\newtheorem{alg}[prop]{Algorithm}
30
\newtheorem{cor}[prop]{Corollary}
31
\newtheorem{example}[prop]{Example}
32
33
\newtheorem*{thm*}{Theorem}
34
\newtheorem*{alg*}{Algorithm}
35
\newtheorem*{lemma*}{Lemma}
36
37
\theoremstyle{definition}
38
\newtheorem{question}{Question}
39
\newtheorem{bonus}{Bonus Question}
40
41
\theoremstyle{remark}
42
\newtheorem{rmk}[prop]{Remark}
43
\newtheorem*{rmk*}{Remark}
44
\newtheorem{notation}[prop]{Notation}
45
\newtheorem*{notation*}{Notation}
46
47
\theoremstyle{definition}
48
\newtheorem{defn}[prop]{Definition}
49
50
\newcommand{\GL}{\mathrm{GL}}
51
\newcommand{\SL}{\mathrm{SL}}
52
\newcommand{\dom}{\operatorname{dom}}
53
\newcommand{\ord}{\operatorname{ord}}
54
55
\newcommand{\mybf}{\mathbb}
56
\newcommand{\bH}{\mybf{H}}
57
\newcommand{\bP}{\mybf{P}}
58
\newcommand{\bR}{\mybf{R}}
59
\newcommand{\bRP}{\mybf{RP}}
60
\newcommand{\bCP}{\mybf{CP}}
61
\newcommand{\bC}{\mybf{C}}
62
\newcommand{\bN}{\mybf{N}}
63
\newcommand{\bZ}{\mybf{Z}}
64
\newcommand{\bQ}{\mybf{Q}}
65
\newcommand{\bF}{\mybf{F}}
66
\newcommand{\bA}{\mybf{A}}
67
68
\newcommand{\Q}{\mybf{Q}}
69
\newcommand{\Z}{\mybf{Z}}
70
71
\newcommand{\F}{\mathcal{F}}
72
\newcommand{\cA}{\mathcal{A}}
73
\newcommand{\cP}{\mathcal{P}}
74
\newcommand{\cB}{\mathcal{B}}
75
\newcommand{\cR}{\mathcal{R}}
76
\newcommand{\cS}{\mathcal{S}}
77
\newcommand{\cI}{\mathcal{I}}
78
\newcommand{\cL}{\mathcal{L}}
79
\newcommand{\cM}{\mathcal{M}}
80
\newcommand{\cF}{\mathcal{F}}
81
\newcommand{\cO}{\mathcal{O}}
82
\newcommand{\cU}{\mathcal{U}}
83
\newcommand{\cG}{\mathcal{G}}
84
\newcommand{\cK}{\mathcal{K}}
85
\newcommand{\cC}{\mathcal{C}}
86
\newcommand{\cH}{\mathcal{H}}
87
\newcommand{\cT}{\mathcal{T}}
88
\newcommand{\cV}{\mathcal{V}}
89
\newcommand{\cX}{\mathcal{X}}
90
\newcommand{\al}{\alpha}
91
\newcommand{\ep}{\epsilon}
92
\newcommand{\p}{\partial}
93
94
\newcommand{\ra}{\rightarrow}
95
96
\providecommand{\abs}[1]{\left\lvert#1\right\rvert}
97
\providecommand{\norm}[1]{\left\lVert#1\right\rVert}
98
99
\newcommand{\ON}[1]{\operatorname{#1}}
100
\addtolength{\hoffset}{-.25in} \addtolength{\textwidth}{.5in}
101
102
\usepackage{ifxetex}
103
\ifxetex
104
\usepackage{fontspec}
105
\else
106
\usepackage[T1]{fontenc}
107
\usepackage[utf8]{inputenc}
108
\usepackage{lmodern}
109
\fi
110
111
\usepackage{bbding}
112
\usepackage{pifont}
113
\usepackage{wasysym}
114
\usepackage{amssymb}
115
116
\title{Number Theory Homework 10}
117
\author{Stephanie Carroll}
118
119
% Enable SageTeX to run SageMath code right inside this LaTeX file.
120
% http://mirrors.ctan.org/macros/latex/contrib/sagetex/sagetexpackage.pdf
121
% \usepackage{sagetex}
122
123
\begin{document}
124
\maketitle
125
126
\begin{question}
127
\begin{enumerate}[(a)]
128
\item
129
130
$p=3 \Rightarrow A=1, B=2$
131
132
$p=5 \Rightarrow A=5, B=5$
133
134
$p=7 \Rightarrow A=7, B=14$
135
136
$p=11 \Rightarrow A=22, B=33$
137
138
$p=13 \Rightarrow A=39, B=39$
139
140
$p=17 \Rightarrow A=68, B=68$
141
142
$p=19 \Rightarrow A=76, B=95$
143
144
\item
145
Since QR's and NR's make up all of the numbers in each mod, we can say that $A+B = 1+2+\cdots +(p-1)$. We can also write this as an equation $A+B= \frac{p(p-1)}{2}$
146
147
$p=3, A+B = 2+1 = 3$
148
149
$p=5, A+B = 4+3+2+1 = 10$
150
151
$p=7, A+B = 6+5+4+3+2+1 = 21$
152
153
We know that $A+B= \frac{p(p-1)}{2}$ is always a multiple of p because $\frac{(p-1)}{2}$ is an integer multiplied by p.
154
155
\item
156
$p=3, A(mod 3) = 1 (mod 3), B=2(mod3)$
157
158
$p=5, A=0 (mod5), B= 0 (mod 5)$
159
160
$p=7, A=0(mod7), B= 0(mod 7)$
161
162
$p=11, A= 0 (mod 11), B= 0(mod 11)$
163
164
For all primes larger than 3, both A and B are congruent to $0 (mod p)$. Since the number of QR's and NR's are the same we also know that the numbers added to get A and the numbers added to get B are also the same. This means that to find A we would have the equation $\frac{1}{6} \frac{p-1}{{2}} \frac{p+1}{2}p$ and this is a multiple of p so our A and B must be both divisible by p.
165
166
\item
167
168
$p=23 \Rightarrow A=92, B=161$
169
170
$p=29 \Rightarrow A=203, B=203
171
172
When the prime is of the form $1 (mod 4)$ then $A=B$.
173
174
\end{enumerate}
175
\end{question}
176
177
\begin{question}
178
\begin{enumerate}[(a)]
179
\item $5987$ is a prime of the form $3 (mod 4)$ which means that it does not have a solution
180
181
\item We can see that $6780 \equiv -1 (mod 6781)$, and 6781 is a $1 (mod 4)$ prime so there is a solution.
182
183
\item If we use the quadratic formula to find our solutions we get
184
185
$x \equiv \frac{1}{2}(64 \pm \sqrt{336})$. We know that $\frac{1}{2}$ exists because we are working mod p. Now if $sqrt{336}$ exists then a solution will exist. Notice that $336 \equiv -1 (mod 337)$ and 337 is a $1 (mod 4)$ prime so there are solutions.
186
187
\item Again we will use the quadratic formula to get $x \equiv \frac{1}{2}(64 \pm \sqrt{324})$. WE just have to check that $\sqrt{324}$ is a real number, and it is $18^2$ so this equation has solutions.
188
\end{enumerate}
189
\end{question}
190
191
192
\begin{question}
193
$p=17 \Rightarrow (2*17)^2+1 =1157=13*89$
194
195
$p=13 \Rightarrow (2*17*13)^2+1=195365=5*41*953$
196
197
$p=5 \Rightarrow (2*17*13*15)^2+1=4884101$
198
\end{question}
199
200
\begin{question}
201
If we reduce the list mod 12 then we have
202
203
QR=$-1,1,-1,1,-1,1, \ldots$
204
205
NR$=5,7,5,7,5,7 \ldots$
206
\end{question}
207
208
209
\begin{question}
210
\begin{enumerate}[(a)]
211
\item Case 1:
212
213
$p \equiv 1 (mod 8)$
214
215
We can write $p=8k+1$. To find our list of numbers $2,4,6, \ldots , p-1$. Set $p-1=8k+1-1 \Rightarrow 8k$, so $\frac{p-1}{2}= \frac{8k}{2} \Rightarrow 4k$. This tells us that there are $4k$ numbers in our list $2,4,6,\ldots , 4k+2,4k+4, \ldots , 8k$. If we look halfway, there are $2k$ numbers in the list $2,4,6, \ldots 4k$ and $2k$ after. Now we can use Euler's formula to say $2^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} (mod p)$. Simplify to get $2^{\frac{p-1}{2}} \equiv 1 (mod p)$.
216
217
\item Case 2:
218
219
$p \equiv 5 (mod 8)$
220
221
We can write $p=8k+5$. To find our list of numbers $2,4,6, \ldots , p-1$. Set $p-1=8k+5-1 \Rightarrow 8k+4$, so $\frac{p-1}{2}= \frac{8k+4}{2} \Rightarrow 4k+2$. This tells us that there are $4k+2$ numbers in our list $2,4,6,\ldots , 4k+2,4k+4,4k+6, \ldots , 8k+4$. If we look halfway, there are $2k+1$ numbers in the list $2,4,6, \ldots 4k+2$ and $2k+1$ after. Now we can use Euler's formula to say $2^{\frac{p-1}{2}} \equiv (-1)^{2k+1} (mod p)$. Simplify to get $2^{\frac{p-1}{2}} \equiv -1 (mod p)$.
222
\end{enumerate}
223
224
\end{question}
225
226
227
\end{document}
228
229
230
231
232
233
234
235