SharedHandouts / ClassNotes / notes911.texOpen in CoCalc
Author: Christine Adams
Views : 37
Description: Typed up notes from 9/11
1
\documentclass[12pt,letterpaper,final]{report}
2
\usepackage{amsmath}
3
\usepackage{amsfonts}
4
\usepackage{amssymb}
5
\usepackage{amsthm}
6
\usepackage[linewidth=1pt]{mdframed}
7
\usepackage{fullpage}
8
9
10
\begin{document}
11
12
\begin{mdframed}
13
14
\center{\Large{\textbf{MATH 314 Fall 2019 - Class Notes}}}
15
\center{9/11/2019} %Put the date of the class here!
16
\center{Scribe: Christine Adams} %Put Your Name Here!
17
18
\end{mdframed}
19
20
\textbf{\underline{Summary:}} Today's class covered the Hill cipher
21
\\
22
23
\textbf{Hill Cipher}\\
24
\textbf{m-block size}\\
25
\textbf{k-$m \times m$} matrix $mod{26}$}\\
26
\textbf{(k has to have an inverse)}\\
27
E($\dot{\vec{v}}$)=$\dot{\vec{v}}$k \\
28
D($\dot{\vec{c}}$)=$\dot{\vec{c}}$k \\
29
\textbf{Inverse of a $2 \times 2 \matrix} \
30
(mod{26}) \\
31
32
if k=$ \begin{smallmatrix}a&b\\c&d\end{smallmatrix}$ ($mod{26}$)\\
33
34
35
\textbf{Then k^{-1}$=(adbc)^{-1} $\begin{smallmatrix}d&-b\\c&a\end{smallmatrix}$ ($mod{26}$)}\\
36
37
\textbf{Determinant has to be a mod 26 value that is odd and not 13}\\
38
\\
39
\textbf{Gcd (det(k), 26)=1, 1 being the greatest factor they have in common.}\\
40
\textbf{This is true for any hill cipher matrix k.}\\
41
Find the inverse of
42
$$\[
43
K=
44
\left[ {\begin{array}{cc}
45
4 & 1 \\
46
3 & 10 \\
47
\end{array} } \right]
48
\]$$
49
\textbf{det(k)=$4\times 10$ -$1\times 3$=37=11 mod {26}}
50
51
K^{-1}=(11)^{-1}=$\begin{smallmatrix}10&-1\\-3&4\end{smallmatrix}$\\
52
53
$$\[19\times
54
\left[ {\begin{array}{cc}
55
10 & 25 \\
56
23 & 4 \\
57
\end{array} } \right] mod{26}
58
\]$$
59
$$\[\equiv
60
\left[ {\begin{array}{cc}
61
19\times 10 & 19 \times 25 \\
62
19\times 23 & 19\times 4 \\
63
\end{array} } \right] mod{26}
64
\]$$
65
=$$\[\equiv
66
\left[ {\begin{array}{cc}
67
8 & 7 \\
68
21 & 24 \\
69
\end{array} } \right] \in \textbf{Inverse}
70
\]$$
71
72
73
74
\textbf{\underline{Chosen Plaintext attack}}\\
75
\textbf{Suppose m=2}\\
76
\textbf{Pick the plaintext} \enquote{"ba"}\textbf{$<$1,0$>$} \\
77
\textbf{E($<1$,0$>$=$<$1,0$>$}
78
$\begin{smallmatrix}a&b\\c&d\end{smallmatrix}$ = $<$a,b$>$ or $<$1,0$>$ ( Find the first row of k)}
79
\\
80
\\
81
Encrypt \enquote{"a,b"}- E($<$0,1$>$)=$<$0,1$>$ $\begin{smallmatrix}a&b\\c&d\end{smallmatrix}$
82
\\Known plaintext attack\\
83
Find the key using linear algebra\\
84
Alice sends the ciphertext LIPVPI to Bob \\
85
11,19,15,21,15,8 \\
86
Eve learns this corresponds to \enquote{"linear"} \\
87
11,19,15,21,15,8 \\
88
Block size m=2\\
89
$<$11,8$>$ k =$<$11,19$>$\\
90
$<$13,4$>$k=$<$15,21$>$\\
91
$<$0,17$>$k=$<$15,8$>$ $mod{26}$ \\
92
\textbf{Matrix equation}
93
$$\[ \left[ {\begin{array}{cc}
94
11 & 8 \\
95
13 & 4 \\
96
\end{array} } \right] k=
97
\left[{\begin{array}{cc}
98
11 & 19 \\
99
15 & 21 \\
100
\end{array} } \right
101
]$$ \\
102
Invert the first matrix (find the inverse to get k by itself)
103
104
$$\[
105
\left[ {\begin{array}{cc}
106
11 & 8 \\
107
13 & 4 \\
108
\end{array}} \right]^{-1}
109
= (44-104)^{-1}
110
\left[{\begin{array}{cc}
111
4 & -8 \\
112
-13 & 11 \\
113
\end{array} } \right]
114
\]$$
115
\textbf{(Even so not invertible)}\\
116
117
\textbf{Try again!\\}
118
\textbf{1st and 3rd equation\\}
119
$$\[
120
\left[ {\begin{array}{cc}
121
11 & 8 \\
122
0 & 17 \\
123
\end{array} } \right]
124
k \equiv \left[ {\begin{array}{cc}
125
11 & 18\\
126
15 & 8 \\
127
\end{array} } \right]
128
\]$$
129
\textbf{Invert this}
130
$$\[
131
\left[ {\begin{array}{cc}
132
11 & 8 \\
133
0 & 17 \\
134
\end{array} } \right]^{-1}\equiv (11*17-8(0))^{-1}
135
\left[ {\begin{array}{cc}
136
17 & -8\\
137
0 & 11 \\
138
\end{array} } \right]
139
\equiv 5^{-1} \left[ {\begin{array}{cc}
140
17 & -8\\
141
0 & 11 \\
142
\end{array} } \right]
143
\]$$
144
$$\[
145
\equiv 21 \times
146
\left[ {\begin{array}{cc}
147
17 & 18\\
148
0 & 11 \\
149
\end{array} } \right]
150
\equiv
151
\left[ {\begin{array}{cc}
152
19 & 14\\
153
0 & 23 \\
154
\end{array} } \right]
155
\]$$
156
\textbf{Multiply both sides of equations on left!}
157
$$\[
158
\left[ {\begin{array}{cc}
159
19 & 14\\
160
0 & 23 \\
161
\end{array} } \right]
162
\left[ {\begin{array}{cc}
163
11 & 8\\
164
0 & 17 \\
165
\end{array} } \right] k\equiv
166
\left[ {\begin{array}{cc}
167
19 & 14\\
168
0 & 23 \\
169
\end{array} } \right]
170
\left[ {\begin{array}{cc}
171
11 & 19\\
172
15 & 8 \\
173
\end{array} } \right]
174
\]$$
175
Identity \\
176
\\
177
$$\[K\equiv
178
\left[ {\begin{array}{cc}
179
19 & 14\\
180
0 & 17 \\
181
\end{array} } \right]
182
\left[ {\begin{array}{cc}
183
11 & 19\\
184
15 & 8 \\
185
\end{array} } \right]
186
\]$$
187
$$\[\equiv
188
\left[ {\begin{array}{cc}
189
19(11)+14(15) & 19(19)+14(8)\\
190
23(15) & 23(8) \\
191
\end{array} } \right]
192
\]$$
193
$$\[
194
\equiv
195
\left[ {\begin{array}{cc}
196
1+2 & 23+8\\
197
7 & 2 \\
198
\end{array} } \right]
199
\]$$
200
201
$$\[
202
\equiv
203
\left[ {\begin{array}{cc}
204
3 & 5\\
205
7 & 2 \\
206
\end{array} } \right]=k
207
\]$$
208
209
\textbf{Key matrix has to be invertible }
210
211
212
213
214
215
216
217
218
219
220
221
222
\end{document}\documentclass[12pt,letterpaper,final]{report}
223
\usepackage{amsmath}
224
\usepackage{amsfonts}
225
\usepackage{amssymb}
226
\usepackage{amsthm}
227
\usepackage[linewidth=1pt]{mdframed}
228
\usepackage{fullpage}
229
230
231
\begin{document}
232
233
\begin{mdframed}
234
235
\center{\Large{\textbf{MATH 314 Spring 2018 - Class Notes}}}
236
\center{10/14/2015} %Put the date of the class here!
237
\center{Scribe: Name} %Put Your Name Here!
238
239
\end{mdframed}
240
241
\textbf{\underline{Summary:}} Insert a short summary of what today's class covered.
242
\\
243
244
\textbf{\underline{Notes:}} Include detailed notes from the lecture or class activities. Format your notes nicely using latex such as
245
246
\begin{itemize}
247
\item bullets
248
\item or
249
\end{itemize}
250
251
\begin{enumerate}
252
\item lists
253
\item of
254
\item things
255
\end{enumerate}
256
257
or \textbf{other} \underline{formatting} \textit{commands.} Make sure to write $e^{qu}a+i \circ \mathbb{N} s$ in math mode.
258
\\
259
260
\textbf{\underline{Examples:}} If including plaintext or ciphertext or other data it is often helpful to write them using \texttt{typewriter text}.
261
262
\end{document}