CoCalc Shared Filesmazur-explicit-formula / worksheets / 2016-06-15-084021-ranks-prime-conductor.sagewsOpen in CoCalc with one click!
Authors: Barry Mazur, William A. Stein
Views : 12

Number of times there are this many curves of prime conductor p<21013p < 2\cdot 10^{13}, in the range of Benett's data.

1       4617822856
2       54999476
3       6647765
4       386047
5       91229
6       20116
7       5306
8       1697
9       726
10      321
11      116
12      50
13      24
14      12
15      5
16      8
17      3
18      2
19      1
20      1
21      1
v = [[1 , 4617822856], [2 , 54999476], [3 , 6647765], [4 , 386047], [5 , 91229], [6 , 20116], [7 , 5306], [8 , 1697], [9 , 726], [10, 321], [11, 116], [12, 50], [13, 24], [14, 12], [15, 5], [16, 8], [17, 3], [18, 2], [19, 1], [20, 1], [21, 1]]
line2d([[a[0], log(a[1])] for a in v], marker='.', markersize=20, aspect_ratio=1/5, frame=True, ymin=-2, xmin=-1, gridlines=True, figsize=13)
-10/4.
-2.50000000000000
db = CremonaDatabase()
db.number_of_isogeny_classes(37)
2
%time cnts = [db.number_of_isogeny_classes(p) for p in primes(300000)]
CPU time: 1.26 s, Wall time: 2.85 s
set(cnts)
set([0, 1, 2, 3, 4, 5, 7])
w = [[i,cnts.count(i)] for i in [1..7]] w
[[1, 2745], [2, 275], [3, 98], [4, 24], [5, 5], [6, 0], [7, 1]]
line2d([[a[0], max(-1,log(a[1]))] for a in w], marker='.', markersize=20, frame=True, gridlines=True)
-6/4.
-1.50000000000000